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0. Imtroduction
The limited purpose of this paper is to discuss a few aspects

of finite dimensional numerical ranges and numerical radii. There is

no attempt to cover the entire field which has expanded in recent
years almost beyond recognition. The aspects involved are merely
those relating to the author's work in the past five years.

The paper consists of two parts: The first (Sections 1 -3)
discusses properties of the classical numerical range and the corres-
ponding numerical radius; the second (Sections 4 -6) is devoted to
C-ranges and C-radii which are generalizations of the classical
concepts.

Regrettably, we treat only a fraction of the finite dimensional
theory. The omitted material includes topics concerning the classical
range, as well as interesting generalizations due to Givens [19],
Bauer [2], Marcus [38], Saunders and Schneider[49], and others.

The ranges and radii we treat here are associated with n X n
matrices operating on g“. Although the infinite dimensional aspects
are neglected, many (but not all) of the mentioned results hold for
linear operators on arbitrary Hilbert spaces as well. For the theory
in general spaces the reader is referred to the thorough texts by
Bonsall and Duncan [6, 7).

1. The Classical Numerical Range
The classical numerical range of a complex matrix A e C

(often called the field of values) is the compact set

L

W(A) = {(Ax,x) : x eC", |x]| =1).

Here (x,y) and |x| are the standard inner product and norm
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defined by S

(x,y) = x"y and x| = (x,x)/2 .

The first to study W(A) was Toeplitz [52] who showed that
the boundary, JdW(A), is a convex curve. A year later Hausdorff
[32] obtained the following celebrated result known as the Toeplitz-
Hausdorff theorem.

THEOREM 1.1. The numerical range is a convex set in the complex
Emi

Different proofs of the theorem can be found in [32, 55, 50, 39,
10, 30, 13, 31, 48, 9].

While for A e gnm,
usually complicated (e.g. Murnaghan [40], Kippenhahn [36]), ¢he 2 x 2

n >3, the explicit geometry of W(A) 1is
case is surprisingly simple. Murnaghan [40] (compare Donaghue [10])
has shown the following.

THEORM 1.2, If

= (P

then W(A) is the (possibly degenerate) elliptic disc with foci at
xl,x,‘,, and semi-minor axis %|a|.

similarities of A, i.e.,

w(u*AU) = W(A), U unitary,

AL ARSI i A

Theorem 1.2 treats in fact the general 2 X 2 case. s '(

s AN

For larger matrices, one can obtain information on W(A) by ™ \ /
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considering inclusion domains (e.g. [43, 33, 1]), or by
approximating W(A) numerically [35].

EBasily verified properties of W(A) are:

W(oA) = aW(A), @ eC;

W(A +alI) = WA) +a;

W(A + B) c W(A) + W(B);

o(A) = {spectrum A} c W(A) .

Since W(A) is convex it also follows that

(1.1) W(A ® B) = conv{W(A),W(B)} (conv for convex hull) ,
and
(1.2) : P(A) = conv o(A) c W(A) .

Review of these and other properties of W(A) can be found

for example in [4h4, 36, 51].

2. assic u, cal

Associated with the numerical range is the numerical radius

r(A) =max{|t]| : ¢ e W(A)} .

Following Ostrowski [42], we call a mapping N': C _ —R a

generalized matrix norm if for all A,B € gmm and @ € C,

N(A) >0, with N(A) >0 for A#0;
Naa) = |e|N(a)
N(A + B) < N(A) + N(B) .
If in addition N is (sub-) mutiplicati;re, namely,
N(AB) < N(A)N(B) ,

then N is called a matrix norm.
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Having the above definitions one can easily prove,.

‘THEOREM 2.1. The numerical radius is a generalized matrix norm

The numerical radius is not a matrix norm. For example, take

0 0 0o 1

By Theorem 1.2 and (1.1), r(A)=r(B)=1/2, r(AB)=1l. Consequently
r(AB) >r(A)r(B) and r is not multiplicative on C _, n >2,
Brown and Shields (see [45]) have considered the 4 X 4 nilpotent

matrix E, E showing that r(E°) = r(E°) = % while

3= %4,y
r(E) <1l. Thus r(E3) > r(E2)r(E). So in general the inequality
r(AB) < r(A)r(B) may fail even when A and B are powers of the
same matrix.

What is true, however, is the following remarkable result by

Berger [3].
THEOREM 2.2. For any A € gnxn,
r(8) <r%(a), k=1,2,3,... .

An equivalent statement is that r(A) <1 implies r(A*) <1,
k =1,2,3,:+.

The history of Theorem 2.2 is interesting, [4]: Lax and Wendroff

[37) proved that r(A) <1, Aeg ., implies r(A) c 7(n) with 7(n)

depending on n alone and satisfying 7(n) - as n —»«, It was
Halmos who conjectured that 7(n) can be replaced by 1. Two special
cases followed: Bernau and Smithies [5] showed that r(A) <1
implies r(Azk) <1, k=1,2,3,"++; and Brown [8]) proved the desired

X
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result for 2 X 2 matrices. Berger [3] was the first to prove the
general case, but his proof was never published. The first published
proof is due to Pearcy [45].

Some properties of r follow immediately from what we know

about W(A). For example,

r(U*AU) = r(A), U unitary;
r(B) <r(A), B principal submatrix of A;

r(4 @ B) = max{r(A),r(B)} .
It is also not hard to see that
(2.1) p(a) < r(a) < Al ,
where
p(A) =max{ || : X € o(A)}
1Al = max( [ax] 2 |x| = 1
are the spectral radius and spectral norm of A, respectively.

3. Convexity. Radiallty. and Spectrallity
In (1.2) and (2.1) we mentioned the relations

P(A) cW(A), p(A) <x(A) < Al .

It seems natural to ask when does equality hold.

Following Halmos [31], we say that A is convexoid if

P(A) = W(A) ;

radialoid if

o(a) = lIAll ;-




spectraloid if
p(A) = r(A);

and normaloid if
r(A) = ||All .

Having defined four types of matrices, an interesting result of
Wintner [56] shows that in fact we have only three:

THEOREM 3.1. A is normaloid if and only if A is radialoid.

Thus we may drop the term "normaloid" to avoid confusion with

"normal" matrices.

The next three theorems characterize convexoids, radialoids and

spectraloids.

THEOREM 3.2. A 1is convexoid if and only if any of the following

conditions holds:

(a) (orlamd [411) || - ¢1)"™|| < {aistance[t,P(A)]}™, for a1l

¢ £ P(A). :
(b) (Furuta and Nekamoto [15]) A - ¢I is spectraloid for all
Le.

(¢) (Puruta [14]) Re P(e'®A) = P(Re ¢:%); 0 <o <or.

(d) (Johnson [34]) A is unitarily similar to B © C where B
is normal and W(C) c W(B).

THEOREM 3.3. A € ann is radialoid if and only if any of the |
following is satisfied:

(8) (e.g. (470) |18 = Jalf*, x =1,2,3,-- .

(b) (Rede [461) ||A%|| = [|a)" .

ey
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(c) (Goldverg and zwas [281) |aA*]| = ||A||%; ¢ any integer
exceeding the degree of the minimal polynomial of A.
(d) (Goldberg' and Zwas [26]) pz(A)I - A"A 18 positive

semi-definite.

(e) (Ptdk [47]) A is unitarily similar to ||A]| (U @ B)
where U is unitary and ||B|| <1.

New proofs of Pték's interesting result in (b) were published
by Flanders [12], Wimmer [54], and Ptdk [47]. The result in (c) --
merely a technical improvement of Ptédk's Theorem -- can be obtained

by a careful inspection of [12].

THEOREM 3.4. A is spectraloid if and only if any of the

following holds:

(a) (Puruta and Takeda (16]) r(A%) = 7(A), k =1,2,3,"- .
(b) (Goldberg, Tadmor and Zwas .[24]) r(A’) = r’(A), with ¢

as in Theorem 3.3 (c).

(¢) (unpublished; follows from Theorem 1, [24]) A 1is

similar to r(A)(U @ B) where U is unitary and r(B) <1.

Since the degree of the minimal polynomial of an n X n matrix
never exceeds n, (b) implies that A < Com 18 spectraloid if
and only if r(An) = r™(A). Thus, we have an analogue of Theorem
3.2 (b).
It seems worth noting that for a general A ¢ Crom? B 2 2, the equality

n-l) > rn-l(

r(A A)

does not guarantee spectrality. For n = 2 the assertion is trivial;

abhe
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for n >3 it was shown, [25], that the n X n matrix

A= a1eg(0N2,1, - A NR)E , By =8, 4

satisfies r(An-l) = rn'l(A), but r(A) >0 = p(A).

The last result in this section describes the various inclusion
relations between the classes of n X n convexoids, radialoids,
spectraloids, and normal matrices, denoted by Cn, Rn’ Sn, and hn’

respectively.

THEOREM 3.5. Let < denote proper inclusion. Then

() N =Co=Ry= 8, . ' i
(b) For n=3,4 N =C cR c8 . :
(e) hSCCSCR'SCSS >

.

(@) For n>6 n cC <8, n cR c8,
but Cn g nn, R’n $ cn 5
The relations between '\'x and (!n are due to Moyls and Marcus 4

[39]. The rest is due to Goldberg and Zwas [27].

ll». C- cal es
Let A, C be n Xn complex matrices. Goldberg and Straus [21]
call the set

W(A) = {tr(CUAU) : U n x.n unitary)}

the C-numerical range of A. %
Evidently,

W(A) = Wd(A) with C = diag(1,0,-:+,0) ;




thus W(A) is a special case of WC(A).
The set WC(A) can be viewed as the range of the mapping
@ : u(a) -C where

u(A) = {U'AU : U unitary} ,

and @ is the linear functional on C = defined by o(X) = tr(Cx).
That is, WC(A) gives all the information a single functional
provides about the class WU(A) of matrices unitarily similar to A.
From this point of view, WC(A) is the ultimate generalization of
WC(A).

We remark that the above observation suggests a natural extention
of the definition of WC(A) to arbitrary Hilbert spaces: If T is
a linear bounded operator on a Hilbert space H and ¢ is a linear

functional on [, we define the @-numerical range of T to be the

set

Wo(T) = {o(U"TU) : U unitary on E} .

Clearly, A and C play a symmetric role in the definition of
WC(A) e TP

WC(A) = WA(C) .

Also, WC(A) is invariant under unitary similarities of A
(or of C). In fact we have ([21]),

THEOREM 4.1. Wo(A) = Wy (A) for all Aeg ~~ if and only

if C and C' are unitarily similar.

The remainder of this section is devoted to C-ranges with
normal C. Since C is normal if and only if C 4is unitarily




similar to a diagonal matrix, Theorem 4.l implies that we may restrict

attention to ranges of the form Gk )(A). For convenience
2
n

W
diaG('fl)
we set the vector c= (71,---,7n), and write Wc(A) instead of

A). all A % i
wdiag(yl,...,yn)( ). Wec Wc( ) the c-numerical range of
A short calculation shows that
% n
» A) = .
W (A) wdiag(’ll,---,‘)'n)( ) {J_ 7J(Axd,xd) {x,j}d=l - An}’

vhere A 1is the set of all orthonormal bases of ¢". Thus, W, (A)
depends on the s~alars 71’.“’711 rather than on the ordered n-tuple c.

We recall now Halmos' definition of the k-numerical range [31, §167],

which after normalization becomes
wk(A) = {i—'tr(PAP) : P orthogonal projections of rank k}, (1 <k <n).
It is a simple matter to check that Wk(A) can be written as
1
(4.1) wk(A) = ch(A) » Q= E(el H S ek) 3

where {e J}g___l is the standard basis of C'. Thus, k-numerical ranges
are special cases of c-ranges. (Compare Fan's range [51, §8.2].)
The main result concerning W (A) is due to Berger [31, §167].

THEOREM 4.2, The k-numerical range is convex.

This result was generalized for c-ranges by Westwick [53]:

THEOREM 4.3. If ¢ ¢ §° then wc(A) is convex. If c e C°,

n >3, then Wc(A) may fail to be convex even for normal A.

Westwick 's deep theorem avoids the 2-dimensiona® case
c = (71,72) € g2, A e %e In this case Goldberg and Straus (21]
have shown that




W(A) = (7, - 7)W(A) 47, tr A .

Applying Theorem 1.2, we find that WE(A} is an elliptic disc with
foci at

Nl * 7R s nd, + 7
where Al,lz, are the eigenvalues of A.

What is the shape of W (A) for ¢ €', n >3%? E.G. Straus
conjectures that WE(A) is star-shaped with respect to Z% 7J tr A --
a point which always belongs to WE(A). This conjecture was verified
for n =3 (unpublished).

The shape of WE(A) for non-normal C is an open question.

5. Inclusion Relations for c-Ranges
An interesting result concerning k-numerical ranges was proved

by Fillmore and Williams [11].

THEOREM 5.1. For any AeC _,

{%tr A} = W(R) SW,  (A) Coevn C W (A) = W(A) .

In this section we present some generalizations of Theorem 5.1,

due to Goldberg and Straus [21].

DEFINITIONS. (a) For vectors c,c' e g?, we write ¢ <e¢!
if there exists a doubly stochastic matrix S such that ¢ = Sc'.
(b) The vector c is obtained from c¢' by pinching if two

components 7',7! of c' are replaced by 7,,7, with
175 i

J

7y =y + (1-a);, 74 = (-a)y tayy, 0<agl,
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while all other components of c¢' remain unchanged.

(¢) We write ¢ << c¢' if ¢ is obtained from c' by a
finite succession of pinchings.

Note that the relations c <c¢' and ¢ < ¢' are invariant
under permutations of the components [71,"',7n}, {7]:,"-,7;]}.

A less trivial remark is that ¢ < c¢' implies ¢ <c' but
not conversely.

Having the above preliminaries we state,

THEOREM 5.2. If c,c' eg“, then

(a) ¢ < c' implies

Wc(A) & Wc,(A) YA ¢ gnxn .

(b) We have ¢ <c' if and only if

Wc(A) C conv Wc,(A) VA eC >

By Theorem 4.2, Wc,(A) may fail to be convex, so we may not
replace conv Wc,(A) by Wc,(A).
Given vectors c,c' ¢ gn, it is usually difficult to check

whether ¢ <c¢' or ¢ « ¢'. For real vectors, however, the situation

simplifies considerably.
DEFINITION. A real vector ¢ = (71 ,-’--,7n) is called ordered if
(5'1) - 71 2722 L Z7n .

THEOREM 5.3. If ¢ = (73), ¢ = (75) are ordered n-vectors,

then each of the relations ¢ <e¢', ¢ « 'c' » 1is equivalent to

k k !
2 7JS E 7 J -1,2,"',!1 ’

3=1 = 9
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N Wc(A) = {0} .
Aoy

More results in this vein are found in [20, 21, 22].

Inclusion relations for general C-ranges are unknown to us.

6. C-Mamerical Radii
As in the classical case , we associate with the C-numerical

range the C-numerical radius of A,

ro(A) =mex{|¢] : ¢ e W (A) .

Naturally, if WC(A) is a c-range or a k-range, the corres-
ponding radius is denoted by rc(A) or rk(A) , respectively.
We begin by utilizing some of the inclusion relations obtained in

the previous section.
Obviously, if Wc(A) e Wc,(A) or even if Wc(A) C conv Wc,(A),
then rc(A) < rc.(A), although the converse may fail to hold. Thus,

Theorem 5.2 (b) yields:
THEOREM 6.1. If c,c' ¢ C" satisfy c <c' then
rc(A) < rc,(A) WEeR . o

Since <« implies <, then this is all we obtain from Theorem 5.2.

Similarly, from Theorem 5.1 and Corollary 5.6 we have,
COROLLARY 6.2. (a) The k-numerical radii satisfy

1

T ltr A| = r(A) S e <r(A)=r(A) VAeg .

(b) For c=(r,) ¢§ with T, 7, =0,

S ——




with equality for k = n (compare [29]).

REMARK 5.4. (a) Since ¢ <c' and ¢ < c' are invariant

under permutations of the 7, and 7!, Theorem 5.3 implies that for

J
s arbitrary.vectors c,c! € g“, the relations ¢ <¢' and c« ¢!
are equivalent.

(b) By the same argument, given c,c' e g”, one may first
rearrange the 73 ,75 to satisfy (5.1), then apply Theorem 5.3 to

determine whether ¢ <c¢' or not.

Theorem 5.2 (a) and Remark 5.4 (a) immediately imply,

THEOREM 5.5. If c,c' e R, then ¢ <c' if and only if

Wc(A) gwc,(A) VAeg o -

By Theorem 5.3, the vectors ¢, 1-<k <n, in (4.2) satisfy

< <'.. <c .
cn c11-1 1

Thus, Theorem 5.1 follows immediately from Theorem 5.5.

Finall , using Theorem 5.5, 5.3, and Remark 5.4 (b), it is not
hard to obtain,

COROLLARY 5.6. (a) If ¢ = (7,) e E® with Z‘J ¥

L (a/n,««+,0/n) <c, and hence

J = a, then

(Ztr a3 gvfc(A) VAeg . -
(b) 1I£ 7420, then c <(®,0,:++,0); thus
W (A) c aM(a) VAEQ .y

(¢) If a =0, then
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rc(A) <ar(A) VAe R

In the remainder of the section we discuss results, due to

Goldberg and Straus [23], concerning the norm properties of the

mapping

rc:gmm-»g.

Since for n =1 the situation is trivial, we assume from now on

that n > 2.

It is easy to see that To is & semi-norm, that is, for any

A,BeC

and o € C,

ry(A) 203
ro(@A) = fulrg(a) ;
rc(A + B) < rC(A) + rc(B) .

The following result characterizes those C for which r

positive definite, i.e., ro is a generai:lzed matrix norm.

c

is

THEOREM 6.3. r, is a generalized matrix norm if and only if

C is not & scalar matrix and tr C # 0.

In particular, since the classical radius is generated by

c = diq(l’o,””o)’ Theoru 6.3 m.lieﬂ Theom 201.
REMARK 6.4, For ¢ = (73)_5 ¢" we have

(a) .

rc(A) = rdiw(yl,ooo,yn)'




| SIS RS CSE

r—

=16~

Thus, by the last theorem, T, is a generalized matrix norm if and

only if not all the 7, are equal and 23 7J,lo.

J
The multiplicativity of Te is a much more complicated question

to which we have a theoretical answer:

THEOREM 6.5. A generalized matrix norm N is a matrix norm
if and only if

(6.1) vy = max{N(AB) : N(A) = N(B) =1} <1 .

In practice, however, Theorem 6.5 offers limited help since

in general, VN is not available.

A different approach to multiplicativity is the following. Given
a generalized matrix norm N, and a constant v >0, we immediately
observe that

N =N
v

is a generalized matrix norm too. If the new norm Nv is multiplica-

tive we say that v 1is a multiplicativity factor for N..

It is not hard to see that v is a multiplicativity factor for

N if and only if v >v, where vy is given in (6.1). But again,
the difficulty in obtaining YN for C-numerical radii renders this

result useless. The only case in which vy ves found (not via (6.6)
though) is the following.

THEOREM 6.6. For the classical radius we have v, = b; i.e.,
vr is a matrix norm if and only if v > k4.

A more practical way to obtain multiplicativity factors is
suggested by & theorem of Gastinel [18) (originally in [17]).

A e B kAT ABGW A e




THEOREM 6.7. Let N be a generalized matrix norm, M a

matrix norm, and n > ¢ >0 constants such that

BM(A) S N(A) < M(n), VAeg . -

Then, any v with v>n/t° is a multiplicativity factor for N,

i.e., Nv 2 yN is a matrix norm.

Teking M to be the spectral norm, Gastinel's theorem was

useful in obtaining multiplicativity factors for c-radii, c ¢ K.

THEOREM 6.8. (a) Let ¢ = (73) be a real n-vector such that

not all the 7 4 &re equal and Z;j 7 # 0. Denocte
z > | Iry - 7|
a = 7| B = 7Y, , b =max |7y, - 7,] .
L W BB

Then for any v with

v zhp(ma;' b)2 ’

the numerical radius w, = e is a 'matry: norm on C sen®
(b) If the 74 &re of the same sign (>0 or <0), then
vr_ 21 is a matrix norm for
c ve

16a

v > .
52

Note that for 7, of the same sign,

w(E0) 162,

hence in this case, (b) is a stronger result than (a).

J

By Remark 6.4 we observe that Theorem 6.8 provides multiplicativity

factors only for those c ¢ g" for which r_ is a generalized matrix
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norm. This is consistent with the fact that indefinite non-trivial

semi-norms have no multiplicativity factors at all.
Finally, apply Theorem 6.8 (b) to the vectors ¢ in (4.1),

which generate the k-numerical radii T We find that VI s
1<k<n-1, isamatrix normon (. 1f v >16k°. Thus, the

smallest multiplicativity factor Theorem 6.8 provides for the classi-

cal radius r = ry

cativity factor Y, - 4 given by Theorem 6.6. In this light it

is v =16, which is far off the least multipli~-

seems worthwhile to improve Theorem 6.8, as well as to obtain

multiplicativity factors for C-radii with general C.
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